Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
MedComm (2020) ; 3(1): e115, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1709625

ABSTRACT

Since the rapid onset of the COVID-19 or SARS-CoV-2 pandemic in the world in 2019, extensive studies have been conducted to unveil the behavior and emission pattern of the virus in order to determine the best ways to diagnosis of virus and thereof formulate effective drugs or vaccines to combat the disease. The emergence of novel diagnostic and therapeutic techniques considering the multiplicity of reports from one side and contradictions in assessments from the other side necessitates instantaneous updates on the progress of clinical investigations. There is also growing public anxiety from time to time mutation of COVID-19, as reflected in considerable mortality and transmission, respectively, from delta and Omicron variants. We comprehensively review and summarize different aspects of prevention, diagnosis, and treatment of COVID-19. First, biological characteristics of COVID-19 were explained from diagnosis standpoint. Thereafter, the preclinical animal models of COVID-19 were discussed to frame the symptoms and clinical effects of COVID-19 from patient to patient with treatment strategies and in-silico/computational biology. Finally, the opportunities and challenges of nanoscience/nanotechnology in identification, diagnosis, and treatment of COVID-19 were discussed. This review covers almost all SARS-CoV-2-related topics extensively to deepen the understanding of the latest achievements (last updated on January 11, 2022).

2.
J Hazard Mater ; 424(Pt A): 127294, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1415558

ABSTRACT

Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792-30.0 MPa, varying the temperature (127-327 °C) and time (1-60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5 min) and high temperatures (above 277 °C), about 99% of HMWs were efficaciously converted to clean products by subcritical hydrothermal treatment. The results of hydrothermal extraction after 5 min indicated that at low temperatures (127-227 °C), the total organic carbon in the aqueous phase increased as the residual solid phase decreased, reaching a peak around 220 °C. Acetone soluble extracts or fat phase appeared above 227 °C and reached a maximum yield of 21% at 357 °C. Aspartic acid, threonine, and glycine were the primary amino acids; glycolic acid, formic acid, lactic acid, and acetic acid were obtained as the main organic acids, glucose, fructose, and cellobiose were substantial sugars produced from the aqueous phase after 5 min of hydrothermal subcritical hydrolysis extraction.


Subject(s)
COVID-19 , Medical Waste , Water Purification , Herbal Medicine , Humans , Hydrolysis , Pandemics , SARS-CoV-2 , Temperature
3.
Mol Biomed ; 2(1): 10, 2021.
Article in English | MEDLINE | ID: covidwho-1183593

ABSTRACT

The recent outbreak of Coronavirus Disease 2019 (COVID-19) calls for rapid mobilization of scientists to probe and explore solutions to this deadly disease. A limited understanding of the high transmissibility of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) relative to other coronavirus strains guides a deeper investigation into the virus/receptor interactions. The cutting-edge studies in thermodynamic and kinetic properties of interactions such as protein-protein interplays have been reviewed in many modeling and analysis studies. Highlighting the thermodynamic assessments of biological interactions and emphasizing the boosted transmissibility of SARS-CoV-2 despite its high similarity in structure and sequence with other coronavirus strains is an important and highly valuable investigation that can lead scientists to discover analytical and fundamental approaches in studying virus's interactions. Accordingly, we have attempted to describe the crucial factors such as conformational changes and hydrophobicity particularities that influence on thermodynamic potentials in the SARS-COV-2 S-protein adsorption process. Discussing the thermodynamic potentials and the kinetics of the SARS-CoV-2 S-protein in its interaction with the ACE2 receptors of the host cell is a fundamental approach that would be extremely valuable in designing candidate pharmaceutical agents or exploring alternative treatments.

4.
Non-conventional in ZarrinTaj Payam/W-7364-2018 | WHO COVID | ID: covidwho-680314

ABSTRACT

Piezoelectric properties and adequate porosity play important roles in bone tissue engineering. In this paper we describe the fabrication of piezoelectric polypropylene (PP) foam using injection molding to be utilized as a potential cost-effective scaffold for bone tissue engineering. One-side mechanical skin removal from the foam was used to investigate the effect of the solid skin on the piezoelectric performance. The microcellular structure, relative density, crystalline structure, mechanical properties, piezoelectric properties under repeated impact pressure and biocompatibility of the scaffolds were investigated using scanning electron microscopy (SEM), water displacement method, differential scanning calorimetry (DSC), uniaxial tension tests, piezoelectric tests and MTT assays, respectively. Uniform spherical cells, with an average size of 75 mu m and a density of 1.23 x 10(6) cells/cm(-3), suitable for bone regeneration, were imaged by SEM. The DSC results showed beta crystals formation in the PP foam during the foaming process which would be valuable for mechanical properties. The foaming process did not reduce the mechanical properties significantly. The foaming process promoted the piezoelectric responses by 134, 922, and 87%, respectively, for the PP samples with 3, 2 and 1 mm thickness. The biocompatibility test suggested improved cellular biocompatibility by foaming. Overall, the results demonstrated the development of a cost-effective scaffold for tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL